# INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY FUTURISTIC DEVELOPMENT

# Biotechnology and Precision Medicine: Transforming Healthcare in the Post-COVID Era

Avinash Kumar 1\*, Vikram 2

- 1-2 Department of Medicine, Punjab Agricultural University, India
- \* Corresponding Author: Avinash Kumar

#### **Article Info**

**P-ISSN:** 3051-3618 **E-ISSN:** 3051-3626

Volume: 01 Issue: 01

**Received:** 28-01-2020 **Accepted:** 27-02-2020 **Published:** 01-04-2020

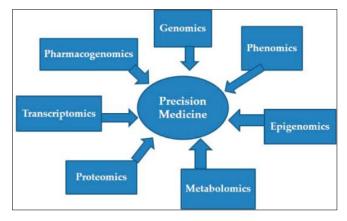
**Page No:** 16-21

#### **Abstract**

The COVID-19 pandemic has fundamentally accelerated the adoption and development of biotechnology and precision medicine approaches, marking a pivotal transformation in healthcare delivery and therapeutic development. The unprecedented speed of vaccine development, the widespread implementation of diagnostic technologies, and the recognition of individual variability in disease response have catalyzed a new era of personalized healthcare. This article examines how biotechnology innovations and precision medicine strategies have evolved in response to the pandemic and explores their transformative potential for future healthcare systems. Through analysis of genomic technologies, biomarker-driven therapies, artificial intelligence applications, and personalized treatment protocols, this study investigates the emerging paradigms that are reshaping medical practice. While highlighting the significant advances in drug development, diagnostic accuracy, and treatment personalization, this research also addresses the challenges of healthcare equity, regulatory adaptation, and system integration that must be overcome to fully realize the potential of precision medicine in the post-pandemic healthcare landscape.

Keywords: COVID-19, Through analysis, Post-pandemic Healthcare

#### Introduction


The COVID-19 pandemic served as an unprecedented catalyst for biotechnology innovation and precision medicine adoption, fundamentally altering the trajectory of healthcare development and delivery. The rapid development of mRNA vaccines, the implementation of large-scale genomic sequencing for viral surveillance, and the recognition of significant individual variations in COVID-19 susceptibility and outcomes have demonstrated both the potential and the necessity of personalized approaches to medicine [1]. These developments have accelerated a transformation that was already underway, pushing precision medicine from the realm of specialized research into mainstream clinical practice.

Precision medicine, defined as the tailoring of medical treatment to the individual characteristics of each patient, represents a departure from the traditional "one-size-fits-all" approach to healthcare [2]. This paradigm shift is enabled by advances in genomics, proteomics, metabolomics, and other omics technologies, combined with sophisticated data analytics and artificial intelligence capabilities. The pandemic has highlighted the importance of understanding individual biological variations and has provided real-world validation of precision medicine approaches at an unprecedented scale.

The post-COVID era is characterized by several key trends that are reshaping healthcare: accelerated drug development timelines, increased emphasis on preventive and predictive medicine, widespread adoption of digital health technologies, and growing recognition of the importance of health equity in precision medicine applications [3]. These trends reflect lessons learned during the pandemic and point toward a future healthcare system that is more personalized, proactive, and equitable than traditional approaches.

The integration of biotechnology innovations with precision medicine strategies has created new possibilities for treating complex diseases, predicting health outcomes, and preventing illness before symptoms appear. However, this transformation also presents significant challenges related to data privacy, healthcare disparities, regulatory frameworks, and the need for substantial investments in infrastructure and training [4].

Understanding both the opportunities and challenges of this transformation is essential for stakeholders seeking to navigate the evolving healthcare landscape.



**Fig 1:** DNA sequencing and genomic analysis represent the foundation of precision medicine, enabling personalized treatment approaches based on individual genetic profiles.

The COVID-19 Catalyst: Accelerating Biotechnology

# Innovation mRNA Technology and Vaccine Development The development of mRNA vaccines for COVID-19 represents one of the most significant biotechnology breakthroughs of the 21st century, demonstrating the potential for rapid therapeutic development using precision

breakthroughs of the 21st century, demonstrating the potential for rapid therapeutic development using precision medicine principles <sup>[5]</sup>. The success of mRNA vaccines validated a technology platform that had been in development for decades but had never before been deployed at scale for infectious disease prevention.

The mRNA vaccine platform offers several advantages over traditional vaccine approaches, including rapid development timelines, scalable manufacturing processes, and the ability to quickly adapt to viral mutations. These characteristics make mRNA technology particularly valuable for responding to emerging infectious diseases and for developing personalized cancer vaccines based on individual tumor profiles [6]. The pandemic has provided proof-of-concept for mRNA technology that is now being applied to other diseases, including cancer, genetic disorders, and autoimmune conditions.

The success of mRNA vaccines has also demonstrated the importance of precision medicine approaches in vaccine development. Individual variations in immune response, genetic background, and comorbid conditions all influence vaccine effectiveness and safety profiles. Understanding these variations enables the development of more targeted vaccination strategies and the identification of individuals who may require different dosing regimens or alternative vaccine formulations [7].

#### **Genomic Surveillance and Variant Tracking**

The pandemic has showcased the power of genomic technologies for real-time disease surveillance and precision public health interventions. Large-scale genomic sequencing of SARS-CoV-2 samples has enabled scientists to track viral evolution, identify new variants, and assess their potential impact on vaccine effectiveness and disease severity [8]. This genomic surveillance infrastructure, built during the pandemic, provides a foundation for monitoring other infectious diseases and for implementing precision public health strategies.

The integration of genomic data with epidemiological information has enabled more precise predictions of disease spread and more targeted interventions. Contact tracing efforts have been enhanced by genomic analysis that can determine transmission chains and identify superspreading events with greater accuracy than traditional epidemiological methods alone <sup>[9]</sup>. These approaches demonstrate the potential for precision medicine to transform not only individual patient care but also population health management.

#### Biomarker Discovery and Risk Stratification

The pandemic has accelerated the discovery and validation of biomarkers for predicting COVID-19 severity, treatment response, and long-term outcomes. Studies have identified genetic variants associated with severe COVID-19, inflammatory markers that predict hospitalization risk, and metabolic signatures associated with long COVID symptoms [10]. These discoveries have immediate clinical applications and also provide insights into the biological mechanisms underlying individual variations in disease susceptibility and outcomes.

The identification of COVID-19 biomarkers has demonstrated the value of multi-omics approaches that integrate genomic, proteomic, metabolomic, and clinical data to develop comprehensive risk prediction models. These integrated approaches are now being applied to other diseases, enabling more precise risk stratification and personalized prevention strategies [11].

# **Current Applications of Precision Medicine Oncology and Cancer Treatment**

Precision oncology has emerged as one of the most advanced applications of personalized medicine, with numerous targeted therapies now available for patients whose tumors harbor specific genetic mutations. The development of companion diagnostics has enabled the identification of patients most likely to benefit from particular treatments, improving both efficacy and safety outcomes [12]. Immunotherapy approaches, including CAR-T cell therapy and checkpoint inhibitors, represent precision medicine strategies that harness the patient's own immune system to fight cancer.

Liquid biopsies, which detect circulating tumor DNA in blood samples, have revolutionized cancer monitoring and treatment selection. These non-invasive tests can identify minimal residual disease, monitor treatment response, and detect resistance mutations before they become clinically apparent [13]. The pandemic has accelerated the adoption of liquid biopsy technologies as healthcare systems sought to minimize patient visits while maintaining quality cancer care. Tumor profiling and genomic testing have become standard components of cancer care for many tumor types. Nextgeneration sequencing technologies enable comprehensive analysis of tumor genetics, providing information that guides treatment selection and clinical trial enrollment. The decreasing costs and increasing accessibility of genomic testing have made precision oncology approaches available to a broader population of cancer patients [14].

# **Pharmacogenomics and Drug Response**

Pharmacogenomics, the study of how genetic variations affect drug response, has gained increased recognition as an essential component of precision medicine. Genetic testing can identify patients who are likely to experience adverse drug reactions, require dose adjustments, or may not respond to standard treatments <sup>[15]</sup>. The implementation of pharmacogenomic testing has been shown to improve patient safety, reduce healthcare costs, and optimize therapeutic outcomes.

The pandemic has highlighted the importance of understanding individual variations in drug metabolism and response. COVID-19 treatments have shown significant variability in effectiveness across different patient populations, emphasizing the need for personalized approaches to therapy selection and dosing [16]. These observations have reinforced the value of pharmacogenomic testing for optimizing treatment outcomes and minimizing adverse effects.

Clinical decision support systems that integrate pharmacogenomic information with electronic health records are being developed to facilitate the implementation of personalized prescribing practices. These systems can alert clinicians to potential drug-gene interactions and provide dosing recommendations based on patient genetic profiles [17]

#### Rare Diseases and Gene Therapy

Precision medicine approaches have shown particular promise for treating rare diseases, many of which are caused by single gene mutations. Gene therapy technologies, including viral vectors, lipid nanoparticles, and genome editing tools like CRISPR-Cas9, offer the potential to correct genetic defects at their source [18]. The development of personalized gene therapies for rare diseases has been accelerated by regulatory pathways that recognize the urgent need for treatments in these underserved populations.

Antisense oligonucleotides and small interfering RNAs represent precision medicine approaches that can target specific genetic sequences associated with rare diseases. These technologies enable the development of highly specific treatments that can modulate gene expression or protein production with minimal off-target effects [19].

The pandemic has demonstrated the potential for rapid therapeutic development when resources are focused and regulatory barriers are reduced. These lessons are being applied to rare disease drug development, with new initiatives aimed at accelerating the development of precision therapies for underserved patient populations.

# Technological Enablers and Innovations Artificial Intelligence and Machine Learning

Artificial intelligence and machine learning technologies have become essential tools for implementing precision medicine at scale. AI algorithms can analyze large datasets to identify patterns and associations that would be impossible to detect through traditional analytical methods <sup>[20]</sup>. These technologies enable the integration of diverse data types, including genomic, imaging, clinical, and lifestyle information, to develop comprehensive models for disease prediction and treatment optimization.

Machine learning approaches have been particularly valuable for analyzing medical imaging data, enabling more precise diagnosis and treatment planning. AI-powered diagnostic tools can detect subtle patterns in medical images that may be missed by human observers, improving diagnostic accuracy and enabling earlier intervention [21]. The pandemic has accelerated the development and deployment of AI

diagnostic tools, particularly for medical imaging applications.

Natural language processing technologies enable the extraction of valuable information from unstructured clinical data, including physician notes, pathology reports, and research literature. These capabilities are essential for implementing precision medicine approaches that require integration of diverse information sources to make treatment recommendations.

#### **Digital Health and Remote Monitoring**

The pandemic has accelerated the adoption of digital health technologies that enable remote patient monitoring and telemedicine consultations. Wearable devices, smartphone applications, and remote monitoring systems can collect continuous data about patient health status, enabling more precise monitoring of treatment response and early detection of health changes [22].

Digital biomarkers derived from smartphone sensors, wearable devices, and other digital tools are being developed to supplement traditional clinical assessments. These digital measures can provide objective, continuous monitoring of patient symptoms and functional status, enabling more personalized treatment adjustments and outcome monitoring. Telemedicine platforms have enabled the delivery of precision medicine consultations to patients in remote or Genetic counseling, underserved areas. specialist consultations, and clinical trial enrollment can now be conducted remotely, improving access to precision medicine services for diverse patient populations.

#### **Advanced Analytics and Data Integration**

The implementation of precision medicine requires sophisticated data analytics capabilities that can integrate and analyze diverse types of biological and clinical information. Cloud computing platforms and advanced analytics tools enable healthcare organizations to process large datasets and develop predictive models for personalized treatment recommendations [4].

Federated learning approaches enable multiple healthcare organizations to collaborate on precision medicine research while maintaining patient privacy and data security. These approaches allow for the development of more robust predictive models by leveraging data from diverse patient populations without requiring centralized data sharing.

Real-world evidence platforms that integrate data from electronic health records, claims databases, and patient-reported outcomes are providing insights into the effectiveness of precision medicine approaches in routine clinical practice. These platforms enable continuous monitoring of treatment outcomes and identification of opportunities for improvement in precision medicine implementation.

# Challenges and Barriers to Implementation Healthcare Equity and Access

One of the most significant challenges facing precision medicine is ensuring equitable access to personalized healthcare approaches across diverse patient populations. The majority of genomic research has been conducted in populations of European ancestry, limiting the generalizability of precision medicine approaches to other ethnic and racial groups [11]. This lack of diversity in research populations can lead to disparities in the effectiveness of

precision medicine interventions and may exacerbate existing healthcare inequalities.

The high costs associated with genomic testing, targeted therapies, and personalized treatment approaches can create barriers to access for patients with limited financial resources or inadequate insurance coverage. Addressing these cost barriers requires policy interventions, innovative financing mechanisms, and efforts to reduce the costs of precision medicine technologies through economies of scale and technological advances.

Geographic disparities in access to precision medicine services are particularly pronounced in rural and underserved areas where specialized expertise and advanced laboratory capabilities may not be readily available. Telemedicine and remote consultation services can help address some of these disparities, but significant investments in infrastructure and training are needed to ensure equitable access to precision medicine approaches.

#### **Data Privacy and Security**

The implementation of precision medicine requires the collection, storage, and analysis of vast amounts of sensitive personal health information, including genomic data that has implications for both patients and their family members. Protecting this information from unauthorized access, misuse, and discrimination requires robust data security measures and comprehensive privacy protections [4].

Genomic data presents unique privacy challenges because it cannot be de-identified in the same way as other types of health information. Genetic information is inherently identifiable and has implications for family members who share genetic variants. Developing appropriate consent processes, data sharing agreements, and privacy protections for genomic information requires careful consideration of these unique characteristics.

The integration of data from multiple sources, including wearable devices, smartphone applications, and social media platforms, creates additional privacy and security concerns. Ensuring that patients maintain control over their personal health information while enabling beneficial uses for precision medicine research and clinical care requires sophisticated consent management and data governance systems.

# **Regulatory and Reimbursement Challenges**

The regulatory landscape for precision medicine is complex and evolving, with different requirements for diagnostic tests, therapeutic products, and software-based medical devices. Ensuring that precision medicine innovations meet appropriate safety and efficacy standards while avoiding unnecessary barriers to innovation requires ongoing dialogue between regulators, industry, and healthcare providers [16]. Reimbursement policies for precision medicine approaches often lag behind technological advances, creating barriers to patient access and provider adoption. Demonstrating the clinical utility and cost-effectiveness of precision medicine interventions requires new approaches to health technology assessment that account for the long-term benefits and personalized nature of these interventions.

Companion diagnostics that are required for certain targeted therapies must undergo separate regulatory review processes, which can delay patient access to innovative treatments. Streamlining these processes while maintaining appropriate safety standards is an ongoing challenge for regulatory agencies.

### Future Directions and Emerging Trends Multi-Omics Integration and Systems Biology

The future of precision medicine lies in the integration of multiple types of biological information, including genomics, proteomics, metabolomics, and microbiomics, to develop comprehensive understanding of disease mechanisms and treatment responses. Systems biology approaches that model the complex interactions between these different biological layers will enable more precise predictions of disease risk and treatment outcomes [10].

Single-cell sequencing technologies are providing unprecedented insights into cellular heterogeneity and disease mechanisms. These technologies enable the identification of rare cell populations that may be responsible for disease progression or treatment resistance, providing new targets for precision medicine interventions.

Longitudinal multi-omics studies that track changes in biological markers over time are providing insights into disease progression and the dynamic nature of treatment responses. These studies are essential for developing predictive models that can anticipate treatment failures and optimize therapeutic strategies.

#### **Precision Prevention and Population Health**

The application of precision medicine principles to disease prevention represents a major opportunity for improving population health outcomes. Risk prediction models that integrate genetic, environmental, and lifestyle factors can identify individuals at high risk for specific diseases and enable targeted prevention strategies [3].

Precision public health approaches that use population-level data to guide targeted interventions are being developed for infectious disease control, chronic disease prevention, and health promotion. These approaches can optimize resource allocation and improve the effectiveness of public health interventions by targeting high-risk populations and geographic areas.

Lifestyle medicine approaches that provide personalized recommendations for diet, exercise, and other lifestyle factors based on individual genetic and metabolic profiles are gaining recognition as important components of precision medicine strategies for chronic disease prevention.

## **Global Health Applications**

The application of precision medicine principles to global health challenges, including infectious diseases, malnutrition, and environmental health threats, represents an important frontier for improving health outcomes in resource-limited settings. Point-of-care diagnostic technologies that can provide rapid, accurate testing in low-resource environments are essential for implementing precision medicine approaches in global health contexts [8].

Mobile health technologies and artificial intelligence applications can enable the delivery of precision medicine services in areas with limited healthcare infrastructure. These technologies can provide decision support for healthcare workers, enable remote consultation with specialists, and facilitate data collection for precision medicine research.

Collaborative research initiatives that include diverse global populations are essential for ensuring that precision medicine approaches are effective across different genetic backgrounds, environmental exposures, and healthcare

systems. These collaborations can also help address health disparities and ensure that the benefits of precision medicine are shared equitably across different populations.

# **Economic Impact and Healthcare Transformation Value-Based Care and Precision Medicine**

The shift toward value-based healthcare models that focus on patient outcomes rather than volume of services provided aligns well with precision medicine approaches that aim to optimize treatment effectiveness and minimize adverse effects. Precision medicine can contribute to value-based care by reducing unnecessary treatments, preventing adverse drug reactions, and enabling earlier intervention for high-risk patients [17].

The development of new payment models that account for the personalized nature of precision medicine interventions is necessary to support widespread adoption. These models must consider the upfront costs of diagnostic testing and the long-term benefits of optimized treatment selection.

Real-world evidence studies that demonstrate the clinical and economic benefits of precision medicine approaches are essential for supporting reimbursement decisions and healthcare policy development. These studies must account for the diverse outcomes and long-term benefits associated with personalized treatment approaches.

# **Healthcare System Integration**

The successful implementation of precision medicine requires significant changes to healthcare delivery systems, including new workflows, decision support tools, and care coordination mechanisms. Electronic health record systems must be redesigned to accommodate genomic and other precision medicine data, and clinical decision support systems must be developed to help clinicians interpret and act on this information [22].

Education and training programs for healthcare providers are essential for ensuring that precision medicine approaches are implemented effectively and safely. These programs must address both the technical aspects of precision medicine and the communication skills needed to discuss personalized treatment recommendations with patients and families.

Quality measurement and improvement initiatives must be developed to monitor the implementation and outcomes of precision medicine approaches. These initiatives should focus on both clinical outcomes and process measures related to appropriate testing, treatment selection, and patient engagement.

#### Conclusion

The COVID-19 pandemic has fundamentally accelerated the transformation of healthcare through biotechnology innovation and precision medicine adoption, creating new paradigms for disease prevention, diagnosis, and treatment. The rapid development of mRNA vaccines, the implementation of genomic surveillance systems, and the recognition of individual variations in disease response have demonstrated both the potential and the necessity of personalized approaches to medicine. These developments have moved precision medicine from specialized research applications to mainstream clinical practice, creating new opportunities for improving patient outcomes and healthcare efficiency.

The current applications of precision medicine in oncology, pharmacogenomics, and rare diseases provide compelling evidence of the potential for personalized healthcare approaches to transform treatment outcomes. The integration of artificial intelligence, digital health technologies, and advanced analytics is enabling the implementation of precision medicine at scale, while ongoing research in multiomics integration and systems biology is expanding our understanding of disease mechanisms and treatment responses.

However, significant challenges remain in ensuring equitable access to precision medicine benefits, protecting patient privacy and data security, and adapting regulatory and reimbursement systems to support innovation while maintaining appropriate safety standards. Addressing these challenges requires coordinated efforts from healthcare providers, policymakers, technology developers, and patient advocacy groups to ensure that the promise of precision medicine is realized for all populations.

The future of healthcare in the post-COVID era will be characterized by increasingly personalized approaches to prevention, diagnosis, and treatment. The successful implementation of precision medicine requires not only continued technological innovation but also substantial investments in healthcare infrastructure, provider education, and policy development. The lessons learned from the pandemic response demonstrate that rapid transformation of healthcare systems is possible when resources are focused and stakeholders collaborate effectively.

As we move forward, the integration of biotechnology innovations with precision medicine strategies will continue to reshape healthcare delivery and create new possibilities for improving human health. The key to realizing this potential lies in addressing the challenges of equity, privacy, and system integration while maintaining focus on the ultimate goal of improving patient outcomes and population health. The post-COVID era represents a unique opportunity to build more personalized, effective, and equitable healthcare systems that can better serve the diverse needs of global populations.

#### References

- 1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, *et al.* Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
- 2. Collins FS, Varmus H. A new initiative on precision medicine. New England Journal of Medicine. 2015;372(9):793-5.
- 3. Khoury MJ, Iademarco MF, Riley WT. Precision public health for the era of precision medicine. American Journal of Preventive Medicine. 2016;50(3):398-401.
- 4. Ginsburg GS, Phillips KA. Precision medicine: From science to value. Health Affairs. 2018;37(5):694-701.
- 5. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, *et al.* Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. New England Journal of Medicine. 2020;383(27):2603-15.
- 6. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nature Reviews Drug Discovery. 2018;17(4):261-79.
- 7. Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, *et al.* COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020;586(7830):594-9.
- 8. Oude Munnink BB, Nieuwenhuijse DF, Stein M,

- O'Toole Á, Haverkate M, Mollers M, *et al.* Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nature Medicine. 2020;26(9):1405-10.
- 9. Lemieux JE, Siddle KJ, Shaw BM, Loreth C, Schaffner SF, Gladden-Young A, *et al.* Phylogenetic analysis of SARS-CoV-2 in Boston highlights the impact of superspreading events. Science. 2021;371(6529):eabe3261.
- 10. Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, *et al*. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92-8.
- 11. Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019;177(1):26-31.
- 12. Schwartzberg L, Kim ES, Liu D, Schrag D. Precision oncology: Who, how, what, when, and when not? American Society of Clinical Oncology Educational Book. 2017;37:160-9.
- 13. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, *et al.* Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nature Reviews Cancer. 2017;17(4):223-38.
- 14. Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treatment Reviews. 2020;86:102019.
- 15. Roden DM, McLeod HL, Relling MV, Williams MS, Mensah GA, Peterson JF, *et al.* Pharmacogenomics. Lancet. 2019;394(10197):521-32.
- Manson LE, van der Lee M, Brakenhoff TB, Bonten MJM, Cremer OL, Groenwold RHH. COVID-19associated hospitalizations among health care personnel in the Netherlands, March-December 2020. JAMA. 2021;325(17):1778-80.
- 17. Dunnenberger HM, Crews KR, Hoffman JM, Caudle KE, Broeckel U, Howard SC, *et al.* Preemptive clinical pharmacogenetics implementation: current programs and challenges. Annual Review of Pharmacology and Toxicology. 2015;55:89-106.
- 18. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372):eaan4672.
- 19. Crooke ST, Witztum JL, Bennett CF, Baker BF. RNA-targeted therapeutics. Cell Metabolism. 2018;27(4):714-39.
- 20. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. New England Journal of Medicine. 2019;380(14):1347-58.
- 21. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, *et al.* International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94.
- 22. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine. 2019;25(1):44-56