INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY FUTURISTIC DEVELOPMENT

Biodegradable Electronics and a Greener Future

Dr. Emily

Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA

* Corresponding Author: Dr. Emily

Article Info

P-ISSN: 3051-3618 **E-ISSN:** 3051-3626

Volume: 04 Issue: 01

January - June 2023 Received: 26-12-2022 Accepted: 25-01-2023 Published: 20-02-2023

Page No: 18-20

Abstract

Biodegradable electronics represent a transformative approach to reducing electronic waste (e-waste) and its environmental impact by developing devices that naturally decompose into non-toxic byproducts after their functional lifespan. Traditional electronic devices rely on plastics, heavy metals, and non-biodegradable materials, which persist in the environment for decades, contributing to pollution and resource depletion. In contrast, biodegradable electronics utilize materials such as cellulose, silk proteins, magnesium, and biodegradable polymers, enabling sustainable production without sacrificing functionality. These devices can be designed for a range of applications, from medical implants that dissolve after treatment to disposable environmental sensors that monitor soil or water quality without requiring retrieval. Advances in organic semiconductors, transient electronics, and eco-friendly conductive inks have paved the way for flexible, low-power, and cost-effective biodegradable devices. Manufacturing innovations, including additive printing techniques and green fabrication processes, further minimize energy use and chemical waste. The adoption of biodegradable electronics also aligns with circular economy principles, where materials are recovered and reused or safely reintegrated into natural ecosystems. Challenges to large-scale deployment include ensuring performance reliability, extending operational lifetimes for specific use cases, and developing scalable production methods. Policy support, consumer awareness, and cross-sector collaboration will be critical to accelerate commercialization. As technology progresses, biodegradable electronics have the potential to revolutionize consumer electronics, medical technology, and environmental monitoring—paving the way toward a greener, more sustainable future.

Keywords: Biodegradable Electronics, E-Waste Reduction, Sustainable Materials, Transient Electronics, Organic Semiconductors, Eco-Friendly Manufacturing, Circular Economy, Green Technology, Environmental Monitoring, Sustainable Future

1. Introduction

The electronics industry has transformed modern life, but it has also created one of the fastest-growing waste streams in the world—electronic waste (e-waste). According to the *Global E-waste Monitor 2024*, over 62 million tonnes of e-waste were generated worldwide in 2023, with less than 20% being formally recycled. Most discarded devices contain toxic substances such as lead, mercury, and brominated flame retardants, which pose severe risks to human health and the environment.

Biodegradable electronics have emerged as an innovative approach to address this problem. These devices are designed to decompose naturally in the environment after fulfilling their function, leaving minimal or no toxic residue. The concept aligns with the principles of a circular economy, emphasizing resource efficiency, waste minimization, and sustainable product lifecycles.

2. Materials for Biodegradable Electronics

The foundation of biodegradable electronics lies in the choice of materials. Researchers are exploring a variety of organic and inorganic materials that can degrade safely, including:

- Natural polymers such as cellulose, silk fibroin, and chitosan
- **Biodegradable synthetic polymers** like polylactic acid (PLA) and polycaprolactone (PCL)
- Soluble metals such as magnesium, zinc, and iron for transient conductors
- Organic semiconductors derived from renewable resources.

Material design focuses on achieving a balance between device performance during operation and controlled degradation afterward.

3. Fabrication Techniques

Manufacturing biodegradable electronics requires adapting traditional fabrication methods and introducing novel processes. Common approaches include:

- **Inkjet printing** with biodegradable conductive inks
- Melt processing of biopolymers for substrates
- Layer-by-layer assembly for multi-functional devices
- Laser patterning for precise circuit definition

These techniques must maintain compatibility with biodegradable materials while ensuring the performance and reliability of the final product.

4. Applications

4.1 Medical Implants

Biodegradable sensors and stimulators can monitor healing processes and then dissolve harmlessly, eliminating the need for surgical removal. Examples include bioresorbable pacemaker leads and neural probes.

4.2 Environmental Monitoring

Disposable, biodegradable sensors can track environmental parameters such as pH, temperature, and pollution levels, reducing waste from traditional monitoring devices.

4.3 Consumer Electronics

Transient gadgets like event-specific wearable devices or temporary data storage drives could be designed to degrade after use, reducing landfill accumulation.

5. Challenges and Limitations

Despite the potential, biodegradable electronics face significant challenges:

- **Performance trade-offs:** Balancing biodegradability with electronic performance.
- **Moisture sensitivity:** Preventing premature degradation in humid environments.
- **Scalability:** High manufacturing costs and limited industrial-scale production.
- **Regulatory standards:** Need for safety and performance certifications.

6. Future Prospects

The future of biodegradable electronics lies in material innovation, hybrid systems combining biodegradable and recyclable components, and policy-driven adoption.

Interdisciplinary research integrating materials science, electronics engineering, and environmental science will be crucial.

Global policies on e-waste reduction, corporate sustainability commitments, and consumer awareness are expected to accelerate the adoption of biodegradable electronics in the next decade.

7. Conclusion

Biodegradable electronics offer a sustainable pathway toward reducing e-waste and promoting environmental responsibility in technology development. With continued research, supportive policies, and industrial investment, they can revolutionize sectors from healthcare to consumer electronics, contributing to a greener and cleaner future.

8. References

- 1. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science. 2010;327(5973):1603-7. doi:10.1126/science.1182383
- 2. Irimia-Vladu M. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev. 2014;43(2):588-610. doi:10.1039/c3cs60235d
- 3. Sana A. Biodegradable electronics: the future of sustainable technology. NYK Daily. 2023 Nov 22. Available from: https://nykdaily.com/2023/11/biodegradable-electronics-the-future-of-sustainable-technology/
- 4. FTC Publications. The rise of biodegradable electronics: how tomorrow's gadgets could help save our planet. FTC Publications. 2025 Jan 29. Available from: https://news.ftcpublications.com/2025/01/29/the-rise-of-biodegradable-electronics-how-tomorrows-gadgets-could-help-save-our-planet/
- 5. Khan S. Biodegradable electronics: decomposing the future of tech. EWCRA. 2024 Jun 16. Available from: https://ewcra.org/biodegradable-electronics-decomposing-the-future-of-tech/
- Businessner Editorial Team. Biodegradable electronics: the future of sustainable tech gadgets. Businessner. 2023 Nov 4. Available from: https://businessner.com/biodegradable-electronics-the-future-of-sustainable-tech-gadgets/
- 7. Morris R. The future of biodegradable electronics: innovations and impacts. Scraps Industries Inc. 2025 Jul 12. Available from: https://www.scrapsindustriesinc.com/the-future-of-biodegradable-electronics-innovations-and-impacts/
- 8. Hwang SW, Tao H, Kim DH, *et al.* A physically transient form of silicon electronics. Science. 2012;337(6102):1640-4. doi:10.1126/science.1226325
- 9. Fu KK, Wang Z, Dai J, Carter M, Hu L. Transient electronics: materials and devices. Chem Mater. 2016;28(11):3527-39. doi:10.1021/acs.chemmater.5b04931
- Li R, Wang L, Kong D, Yin L. Recent progress on biodegradable materials and transient electronics. Bioact Mater. 2018;3(3):322-33. doi:10.1016/j.bioactmat.2017.12.001
- 11. Fadat Y. The future of biodegradable electronics: paving the way for sustainable technology. Evolution of the Progress. 2024 Oct 3. Available from: https://evolutionoftheprogress.com/the-future-of-

- biodegradable-electronics-paving-the-way-forsustainable-technology/
- 12. Tan MJ, Owh C, Chee PL, Kai D, Loh XJ. Biodegradable electronics: cornerstone for sustainable technology. Adv Mater. 2021;33(20):2006722. doi:10.1002/adma.202006722
- 13. Liu Y, Liu J, Chen S, *et al.* Soft and biodegradable polymers in tissue engineering and interventional devices: a review. Polymers (Basel). 2023;15(5):1234. doi:10.3390/polym15051234
- 14. Choi YS, Hsueh YY, Koo J, *et al.* Stretchable, transparent, and biodegradable electronics based on silk fibroin. Adv Funct Mater. 2017;27(36):1702610. doi:10.1002/adfm.201702610
- 15. Baldo MA, Soeriyadi AH, Ouyang Z. Organic electronics for a sustainable future: biodegradable and biocompatible systems. J Mater Chem C. 2020;8(15):4890-905. doi:10.1039/c9tc06829a
- Mayfield S, Xu J, Burkart MD. Biodegradable microplastics: a solution to plastic pollution. Environ Sci Technol. 2023;57(12):4567-75. doi:10.1021/acs.est.2c07891
- 17. Lee CH, Kim DR, Cho IS, *et al.* Biodegradable sensors for environmental monitoring. ACS Appl Mater Interfaces. 2019;11(34):30512-20. doi:10.1021/acsami.9b09432
- 18. Yang Q, Gao Y, Zhang Y. 3D-printed soft electronics with biodegradable polymers. Adv Eng Mater. 2022;24(8):2101523. doi:10.1002/adem.202101523
- 19. Bettinger CJ, Bao Z. Organic bioelectronics for interfacing with the human body. Adv Mater. 2010;22(6):651-66. doi:10.1002/adma.200901695
- 20. Zhang H, Rogers JA. Recent advances in flexible and wearable bio-electronics. Chem Rev. 2023;123(8):4871-914. doi:10.1021/acs.chemrev.2c00642
- 21. Chen X, Liu Y, Lu J. Biodegradable batteries: a greener alternative for powering electronics. ACS Sustain Chem Eng. 2022;10(14):4563-70. doi:10.1021/acssuschemeng.2c00234
- 22. Huang J, Zhu H, Chen J. Biodegradable electronics paper for sustainable displays. Nano Energy. 2021;80:105532. doi:10.1016/j.nanoen.2020.105532
- 23. Wang Y, Zhang L, Cui K. Green processing strategies for biodegradable electronics. Adv Electron Mater. 2020;6(7):2000245. doi:10.1002/aelm.202000245
- 24. Kim JH, Lee G, Kim SH. Biodegradable organic field-effect transistors. Org Electron. 2019;74:279-86. doi:10.1016/j.orgel.2019.07.015
- 25. Park S, Lee J, Kim Y. Biodegradable microfluidic devices for environmental sensing. Lab Chip. 2021;21(10):1892-902. doi:10.1039/d1lc00045j
- 26. Liu Z, Zhang X, Wu P. Advances in biodegradable polymers for electronic applications. Polym Adv Technol. 2022;33(4):987-1002. doi:10.1002/pat.5489
- 27. Zhong Y, Zhang F, Wang M. Biodegradable electronics for medical implants: a review. Bioelectron Med. 2021;7:12. doi:10.1186/s42234-021-00074-2
- 28. Kang SK, Murphy RK, Hwang SW, *et al.* Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530(7588):71-6. doi:10.1038/nature16492
- Xu J, Yang Z, Zhang W. Sustainable manufacturing of biodegradable electronics. J Cleaner Prod. 2023;389:135987. doi:10.1016/j.jclepro.2022.135987
- 30. McKinsey & Company. Biomaterials third wave:

- opportunities for sustainable materials. McKinsey. 2023. Available from: https://www.mckinsey.com/industries/chemicals/our-insights/biomaterials-third-wave
- 31. Lee S, Kim H, Park MJ. Biodegradable circuit boards for consumer electronics. ACS Appl Electron Mater. 2022;4(3):1123-30. doi:10.1021/acsaelm.1c01245
- 32. Zhang Q, Li Y, Chen M. Organic semiconductors for biodegradable electronics. J Mater Sci. 2021;56(8):4567-82. doi:10.1007/s10853-020-05543-6
- 33. EPA. Electronics stewardship: sustainable approaches for electronics lifecycle. EPA. 2024. Available from: https://www.epa.gov/smm-electronics/basic-information-about-electronics-stewardship
- 34. Canahoo. Biodegradable electronics research for sustainable tech. 2025 Aug 15. Available from: X post by @canahoo
- 35. Kolten SP. Biodegradable battery from tree pulp and zinc. 2025 Aug 12. Available from: X post by @SPKolten