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Abstract 

Carbon capture integration in urban systems represents a critical strategy for 

mitigating greenhouse gas emissions and achieving sustainable city development. 

Urban areas are responsible for a significant proportion of global carbon dioxide 

emissions due to energy consumption, transportation, and industrial activities. This 

paper examines the incorporation of carbon capture technologies into urban 

infrastructure, including building materials, energy systems, and transportation 

networks. Key approaches include direct air capture units in urban centers, carbon-

sequestering construction materials, and integration with renewable energy sources for 

energy-efficient carbon capture operations. By linking carbon capture with smart city 

technologies, such as Internet of Things (IoT) monitoring and real-time data analytics, 

cities can optimize capture efficiency, track emissions, and support climate action 

plans. Multi-stakeholder engagement, encompassing policymakers, urban planners, 

researchers, and industry, is essential to ensure feasibility, scalability, and social 

acceptance. Case studies from pilot urban carbon capture projects demonstrate 

technical viability, economic considerations, and potential environmental co-benefits, 

including improved air quality and reduced urban heat effects. The findings highlight 

that integrating carbon capture into urban systems not only reduces emissions but also 

contributes to circular economy principles by enabling the reuse of captured carbon in 

construction, energy, and industrial applications. Future research should focus on cost 

reduction, technological innovation, regulatory frameworks, and community 

involvement to maximize adoption. 
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Introduction 

Urban areas account for over 70% of global CO2 emissions, driven by energy consumption in buildings, transport, and waste 

management [1, 2]. As cities grow, integrating carbon capture technologies becomes essential to meet Paris Agreement targets 

and achieve carbon neutrality [3]. Carbon capture involves capturing CO2 at point sources or from ambient air, followed by 

storage (CCS) or utilization (CCU) in products like fuels or building materials [4, 5]. 

This integration requires cross-disciplinary efforts: engineering for technology deployment, urban planning for spatial 

optimization, and policy for incentives [6]. Benefits include reduced emissions, enhanced air quality, and economic opportunities 

through carbon markets [7]. However, barriers like infrastructure limitations and public acceptance must be addressed [8, 9]. 

This article explores challenges, technologies, solutions, case studies, and future directions for carbon capture in urban systems, 

supported by 50 references in Vancouver style. 

 

Challenges in Carbon Capture Integration 

Urban carbon capture faces technical, economic, and social hurdles. High energy requirements for capture processes, such as 

solvent-based absorption, can increase operational costs by 30-50% [10, 11].  
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Scalability is limited in space-constrained cities, where 

retrofitting buildings or installing DAC units demands 

significant infrastructure [12]. 

Economic challenges include high capital investments; for 

instance, DAC costs range from $250-600 per ton of CO2 

captured [13, 14]. Storage sites may be distant from urban 

centers, raising transportation risks and costs [15]. Public 

skepticism arises from perceived safety issues, like CO2 

leakage, and concerns over greenwashing by industries [16, 17]. 

Environmental trade-offs, such as increased water use in 

some capture methods, and integration with intermittent 

renewables complicate deployment [18, 19]. Policy gaps, 

including inconsistent regulations and subsidies, hinder 

widespread adoption [20]. 

 

Technologies and Methodologies 

Key technologies include post-combustion capture for power 

plants, DAC for ambient air, and bio-CCS using biomass [21, 

22]. In urban settings, building-integrated DAC leverages 

HVAC systems to capture CO2 from ventilation air [23]. 

Methodologies involve life cycle assessments (LCA) to 

evaluate emissions reductions and costs [24, 25]. Modeling tools 

like urban metabolism networks analyze carbon flows across 

sectors [26]. Optimization frameworks integrate CCS with 

renewable energy, using AI for efficient operation [27, 28]. 

Interdisciplinary approaches combine GIS for site selection 

with economic modeling for viability [29]. Community-scale 

systems, such as district heating with CCS, distribute capture 

across neighborhoods [30, 31]. 

 

Innovative Solutions 

Innovations address challenges through modular designs and 

hybrid systems. Flexible CCU converts captured CO2 into 

concrete or fuels, creating revenue streams [32, 33]. Urban 

greening enhances natural sequestration; biochar from waste 

sequesters carbon while improving soil [34]. 

Policy solutions include carbon pricing and incentives like 

tax credits under the U.S. Inflation Reduction Act [35]. Public-

private partnerships fund pilots, as in building-integrated 

capture [36, 37]. 

Technological advances, such as membrane-based capture, 

reduce energy needs by 20% [38]. Digital twins simulate urban 

integration, optimizing placement and operations [39, 40]. 

 

Case Studies 

Stockholm's Biochar Project turns garden waste into biochar, 

sequestering 700 tons of CO2 annually while providing 

district heating (41). This urban sink demonstrates waste-to-

resource CCU (42). 

In New York, CarbonQuest integrates DAC with building 

HVAC, capturing CO2 from exhaust and storing it onsite, 

reducing emissions by 90% in pilot buildings [43, 44]. Hawassa, 

Ethiopia, uses green spaces for sequestration, with trees 

storing significant carbon, highlighting low-cost nature-

based solutions in developing cities [44, 45]. 

Helsinki's urban parks LCA shows net CO2 removals through 

vegetation management, balancing maintenance emissions 
[47, 48]. These cases illustrate scalable, context-specific 

integration achieving emission reductions and co-benefits 

like improved biodiversity. 

 

Future Directions and Conclusion 

Future efforts should focus on cost reduction through R&D 

in sorbents and integration with smart grids [49, 50]. 

International collaboration can standardize urban CCS 

frameworks, addressing transboundary storage [51, 52]. 

Policy recommendations include urban carbon plans 

mandating capture in new developments [53]. Education and 

engagement will build public support [54]. 

In conclusion, integrating carbon capture in urban systems is 

crucial for sustainable cities. By overcoming challenges 

through innovation and collaboration, cities can lead in global 

decarbonization, fostering resilient, low-carbon futures [55, 60]. 
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