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Carbon capture integration in urban systems represents a critical strategy for

mitigating greenhouse gas emissions and achieving sustainable city development.
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Introduction

Urban areas account for over 70% of global CO2 emissions, driven by energy consumption in buildings, transport, and waste
management [ 2. As cities grow, integrating carbon capture technologies becomes essential to meet Paris Agreement targets
and achieve carbon neutrality 1. Carbon capture involves capturing CO2 at point sources or from ambient air, followed by
storage (CCS) or utilization (CCU) in products like fuels or building materials [ °I,

This integration requires cross-disciplinary efforts: engineering for technology deployment, urban planning for spatial
optimization, and policy for incentives [®l. Benefits include reduced emissions, enhanced air quality, and economic opportunities
through carbon markets 1. However, barriers like infrastructure limitations and public acceptance must be addressed [& 91,

This article explores challenges, technologies, solutions, case studies, and future directions for carbon capture in urban systems,
supported by 50 references in Vancouver style.

Challenges in Carbon Capture Integration

Urban carbon capture faces technical, economic, and social hurdles. High energy requirements for capture processes, such as
solvent-based absorption, can increase operational costs by 30-50% [10 111,
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Scalability is limited in space-constrained cities, where
retrofitting buildings or installing DAC units demands
significant infrastructure 1121,

Economic challenges include high capital investments; for
instance, DAC costs range from $250-600 per ton of CO2
captured [ 14 Storage sites may be distant from urban
centers, raising transportation risks and costs %I, Public
skepticism arises from perceived safety issues, like CO2
leakage, and concerns over greenwashing by industries [16: 171,
Environmental trade-offs, such as increased water use in
some capture methods, and integration with intermittent
renewables complicate deployment [8 191 Policy gaps,
including inconsistent regulations and subsidies, hinder
widespread adoption [2,

Technologies and Methodologies

Key technologies include post-combustion capture for power
plants, DAC for ambient air, and bio-CCS using biomass -
221 In urban settings, building-integrated DAC leverages
HVAC systems to capture CO2 from ventilation air %31,
Methodologies involve life cycle assessments (LCA) to
evaluate emissions reductions and costs 4251, Modeling tools
like urban metabolism networks analyze carbon flows across
sectors [?61, Optimization frameworks integrate CCS with
renewable energy, using Al for efficient operation 127 281,
Interdisciplinary approaches combine GIS for site selection
with economic modeling for viability ?°. Community-scale
systems, such as district heating with CCS, distribute capture
across neighborhoods (20311,

Innovative Solutions

Innovations address challenges through modular designs and
hybrid systems. Flexible CCU converts captured CO2 into
concrete or fuels, creating revenue streams [2 31 Urban
greening enhances natural sequestration; biochar from waste
sequesters carbon while improving soil 34,

Policy solutions include carbon pricing and incentives like
tax credits under the U.S. Inflation Reduction Act %%, Public-
private partnerships fund pilots, as in building-integrated
capture [36.371,

Technological advances, such as membrane-based capture,
reduce energy needs by 20% [81. Digital twins simulate urban
integration, optimizing placement and operations [3% 401,

Case Studies

Stockholm's Biochar Project turns garden waste into biochar,
sequestering 700 tons of CO2 annually while providing
district heating (41). This urban sink demonstrates waste-to-
resource CCU (42).

In New York, CarbonQuest integrates DAC with building
HVAC, capturing CO2 from exhaust and storing it onsite,
reducing emissions by 90% in pilot buildings [**44. Hawassa,
Ethiopia, uses green spaces for sequestration, with trees
storing significant carbon, highlighting low-cost nature-
based solutions in developing cities [ 451,

Helsinki's urban parks LCA shows net CO2 removals through
vegetation management, balancing maintenance emissions
47 48 These cases illustrate scalable, context-specific
integration achieving emission reductions and co-benefits
like improved biodiversity.

Future Directions and Conclusion
Future efforts should focus on cost reduction through R&D
in sorbents and integration with smart grids [ 501,
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International collaboration can standardize urban CCS
frameworks, addressing transboundary storage [5% 52,

Policy recommendations include urban carbon plans
mandating capture in new developments 2, Education and
engagement will build public support 54,

In conclusion, integrating carbon capture in urban systems is
crucial for sustainable cities. By overcoming challenges
through innovation and collaboration, cities can lead in global
decarbonization, fostering resilient, low-carbon futures [5% 80,
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