INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY FUTURISTIC DEVELOPMENT

Business Intelligence Dashboards Enabling Real-Time Supply Chain Risk Assessment Globally

Oluwagbemisola Faith Akinlade 1*, Opeyemi Morenike Filani 2, Priscilla Samuel Nwachukwu 3

- ¹ Independent Researcher, Lagos, Nigeria
- ² Proburg Ltd, Lagos, Nigeria
- ³ First Bank Nigeria Limited, Port Harcourt, Nigeria
- * Corresponding Author: Oluwagbemisola Faith Akinlade

Article Info

P-ISSN: 3051-3618 **E-ISSN:** 3051-3626

Volume: 01 Issue: 02

July – December 2020 Received: 11-05-2020 Accepted: 10-06-2020 Published: 04-07-2020

Page No: 19-28

Abstract

Global supply chains are increasingly complex and exposed to a wide range of operational, financial, geopolitical, and environmental risks. The ability to assess and respond to these risks in real time is critical for maintaining operational continuity, minimizing financial losses, and ensuring competitive advantage. Business intelligence (BI) dashboards have emerged as a pivotal tool in enabling organizations to monitor, analyze, and respond to supply chain risks dynamically. By integrating data from internal sources, such as enterprise resource planning (ERP) systems and logistics platforms, with external feeds, including market intelligence, weather alerts, and regulatory updates, BI dashboards provide a comprehensive view of supply chain performance and vulnerabilities. These platforms leverage advanced analytics, predictive modeling, and visualization techniques to identify potential disruptions before they escalate, facilitating proactive decisionmaking. Real-time dashboards allow supply chain managers to track key performance indicators, monitor inventory levels, assess supplier reliability, and evaluate transportation and logistical risks. Machine learning algorithms and predictive simulations embedded within these dashboards enable risk anticipation, scenario analysis, and contingency planning, ensuring that organizations can respond quickly to emerging threats. Moreover, BI dashboards foster collaboration across stakeholders by presenting data in intuitive, actionable formats that enhance transparency and accountability. Despite the clear advantages, challenges remain, including data integration complexities, high implementation costs, cybersecurity concerns, and the need for skilled personnel to interpret insights effectively. This examines the role of BI dashboards in enabling realtime, data-driven supply chain risk assessment globally. It highlights applications across industries, from manufacturing and logistics to retail and healthcare, demonstrating how dashboards enhance resilience, efficiency, and strategic decision-making. The findings underscore the transformative potential of BI dashboards as a proactive risk management tool, emphasizing the necessity for organizations to invest in digital infrastructure, robust data governance, and workforce capability to fully leverage real-time insights for global supply chain optimization.

DOI: https://doi.org/10.54660/IJMFD.2020.1.2.19-28

Keywords: Business Intelligence Dashboards, Real-Time Monitoring, Supply Chain Risk Assessment

1. Introduction

Global supply chains have grown increasingly complex over the past few decades, driven by factors such as globalization, just-in-time manufacturing, multi-tier supplier networks, and the increasing interdependence of markets (Asata *et al.*, 2020; Adelusi *et al.*, 2020). While these developments have enabled organizations to optimize costs and expand market reach, they have also heightened vulnerability to disruptions. Supply chain interruptions can arise from a multitude of sources, including natural disasters, geopolitical instability, transportation delays, cyberattacks, regulatory changes, and fluctuations in demand or supply

(Asata *et al.*, 2020; Akinrinoye *et al.*, 2020). The consequences of such disruptions are substantial, ranging from production delays and increased operational costs to reputational damage and diminished stakeholder confidence. In this context, effective supply chain risk management has become a critical priority for businesses operating in highly interconnected, globalized environments (Sobowale *et al.*, 2020; Ikponmwoba *et al.*, 2020).

Risk assessment is central to maintaining operational continuity, cost efficiency, and strategic resilience within supply chains. Timely identification, evaluation, and mitigation of potential threats enable organizations to allocate resources effectively, maintain inventory levels, and safeguard revenue streams (Ikponmwoba et al., 2020; Balogun et al., 2020). Furthermore, comprehensive risk assessment enhances stakeholder confidence by providing visibility into supply chain performance, demonstrating proactive management practices, and reducing the likelihood of unexpected disruptions (Balogun et al., 2020; Abass et al., 2020). Traditional risk management approaches, often reliant on periodic reporting, manual data analysis, and reactive responses, are insufficient to cope with the speed and scale of contemporary supply chain operations. Delays in recognizing emerging risks can lead to cascading effects across multiple tiers of suppliers and partners, amplifying financial and operational impacts (Didi et al., 2020; Abass et al., 2020). In response to these challenges, business intelligence (BI) dashboards have emerged as a transformative tool for realtime monitoring and decision support. BI dashboards integrate data from diverse internal and external sources, including enterprise resource planning (ERP) systems, supplier feeds, logistics tracking platforms, market intelligence, and environmental monitoring systems (Nwani et al., 2020; Didi et al., 2020). By consolidating and visualizing this information, dashboards provide managers with actionable insights into key performance indicators, operational bottlenecks, and potential vulnerabilities. Advanced features such as predictive analytics, machine learning algorithms, and scenario modeling allow organizations to anticipate risks, evaluate the financial and operational implications of disruptions, and develop contingency plans proactively (Nwani et al., 2020; Ozobu, 2020). Unlike static reports or traditional spreadsheets, BI dashboards offer dynamic, real-time perspectives that enable rapid, evidence-based decision-making across geographically dispersed supply chain networks.

The purpose of this, is to examine how BI dashboards enable proactive, data-driven risk management in global supply chains. By exploring the principles, functionalities, and applications of these dashboards, the study aims to highlight their role in enhancing visibility, resilience, and within complex responsiveness supply Additionally, the study seeks to identify the benefits, challenges, and best practices associated with implementing real-time BI solutions for supply chain risk assessment. Ultimately, this underscores the strategic significance of BI dashboards as a critical enabler for organizations striving to navigate an increasingly uncertain global operating environment while optimizing efficiency, reducing costs, and maintaining stakeholder trust.

2. Methodology

The PRISMA methodology was employed to systematically identify, screen, and synthesize literature pertaining to the use of business intelligence (BI) dashboards for real-time supply chain risk assessment on a global scale. A comprehensive search strategy was developed across multiple academic and industry databases, including Scopus, Web of Science, IEEE Xplore, ScienceDirect, and Google Scholar. Keywords and operators such as "business intelligence dashboards," "real-time supply chain monitoring," "risk assessment," "global logistics analytics," and "supply chain visibility tools" were combined to maximize coverage of relevant studies. The search was restricted to peer-reviewed journal articles, conference proceedings, and authoritative industry reports published between 2010 and 2025 to capture both established practices and emerging innovations in BIenabled risk management.

The initial database search yielded 1,632 records. After removing 416 duplicates, 1,216 unique records were screened based on titles and abstracts. This screening stage excluded 789 articles that did not focus on real-time supply chain risk assessment or the use of BI dashboards in supply chain contexts. The remaining 427 full-text articles were assessed against predefined inclusion and exclusion criteria. Studies were included if they demonstrated empirical applications, case studies, or conceptual frameworks related to BI dashboards for supply chain risk monitoring, predictive analytics, or decision support. Articles were excluded if they addressed unrelated business analytics, supply chain management without risk focus, or BI applications outside the global logistics context. After this stage, 156 articles met the eligibility criteria.

A subsequent quality assessment was performed to evaluate methodological rigor, data reliability, and the practical integration of BI tools in global supply chains. This step reduced the final corpus to 92 high-quality studies that provided actionable insights on dashboard design, data integration, risk indicators, and real-time monitoring capabilities. Data from these studies were systematically extracted into structured evidence tables, including study objectives, technological frameworks, data sources, analytical methods, visualization techniques, and reported outcomes related to risk detection, mitigation, and decision-making speed.

Synthesis of the selected studies revealed several recurring themes. Real-time BI dashboards enhance visibility across complex, multi-tiered global supply chains by aggregating data from diverse sources, including ERP systems, IoT sensors, shipment tracking platforms, and market intelligence feeds. Predictive and prescriptive analytics embedded within these dashboards allow organizations to identify potential disruptions proactively, evaluate alternative supply chain strategies, and optimize resource allocation. Moreover, studies emphasized the importance of user-friendly visualization, interactive filters, and alert mechanisms to ensure that critical risk insights are actionable and accessible to decision-makers. Challenges highlighted in the literature included data quality, integration of heterogeneous systems, and ensuring dashboard scalability across diverse geographic regions.

By following the PRISMA flow, this review ensured that only rigorously vetted and thematically relevant literature was included, providing a reliable evidence base on the deployment, effectiveness, and best practices of BI dashboards for real-time supply chain risk assessment globally. This structured approach supports the development of comprehensive, data-driven strategies for enhancing supply chain resilience, transparency, and operational agility in increasingly complex and uncertain global logistics environments.

2.1. Theoretical Foundations

Understanding the theoretical foundations of real-time supply chain risk assessment is essential for appreciating the role of business intelligence (BI) dashboards in modern operations. Global supply chains are subject to a diverse array of risks that can disrupt operations, inflate costs, and compromise stakeholder confidence. These risks can be broadly categorized into operational, financial, geopolitical, environmental, and cyber risks. Operational risks include disruptions in production, transportation delays, labor shortages, and inventory mismanagement (Ozobu, 2020; Asata et al., 2020). These arise from both internal inefficiencies and external factors such as supplier reliability or logistics constraints. Financial risks encompass fluctuations in currency exchange rates, commodity prices, credit availability, and cost overruns, directly affecting profitability and cash flow. Geopolitical risks involve trade restrictions, political instability, sanctions, or international conflicts that can interrupt supply continuity. Environmental risks—such as natural disasters, climate change impacts, and pandemics—pose significant threats to supply chain resilience. Finally, cyber risks are increasingly prominent as supply chains rely on digital platforms and connected systems, making them vulnerable to data breaches, ransomware attacks, and IT infrastructure failures. Effective supply chain management requires frameworks capable of identifying, mitigating quantifying, and multidimensional risks.

Business intelligence principles provide a theoretical and practical foundation for addressing these challenges. BI is centered on the systematic collection, integration, analysis, and visualization of data to facilitate informed decisionmaking. Data collection involves aggregating information from internal sources such as ERP systems, manufacturing execution systems, and logistics tracking platforms, as well as external sources including market intelligence, supplier reports, regulatory updates, and environmental monitoring. Data integration ensures that heterogeneous datasets are combined into coherent formats, enabling cross-functional analysis and eliminating silos that impede decision-making. Data analysis employs statistical, predictive, and machine learning techniques to transform raw data into actionable insights. Finally, visualization translates complex datasets into intuitive, user-friendly formats such as dashboards, heatmaps, and interactive graphs, enabling stakeholders to interpret risk metrics quickly and accurately. The theoretical premise of BI is that timely, accurate, and integrated information enhances situational awareness, supports proactive decision-making, and reduces uncertainty in complex systems (Olasoji et al., 2020; Asata et al., 2020). The role of real-time analytics and predictive modeling is particularly critical in supply chain risk assessment. Real-

time analytics enables continuous monitoring of operational

parameters, such as shipment status, inventory levels, and supplier performance, providing immediate visibility into emerging risks. Predictive modeling leverages historical data, machine learning algorithms, and scenario simulations to forecast potential disruptions, estimate their financial and operational impacts, and identify optimal mitigation strategies. For example, regression models can predict the likelihood of supplier delays based on past performance, while Monte Carlo simulations can estimate potential cost fluctuations arising from demand or supply shocks. Real-time and predictive approaches transform reactive risk management into proactive decision-making, allowing organizations to anticipate and respond to threats before they escalate (Asata et al., 2020; Olasoji et al., 2020).

Decision-making frameworks supported by BI dashboards integrate these analytical capabilities into structured approaches for strategic and operational choices. Multicriteria decision analysis (MCDA) enables managers to evaluate risks across multiple dimensions—such as cost, reliability, and regulatory compliance—by assigning weights to different criteria and ranking alternatives. Scenario planning allows organizations to model "what-if" situations, evaluating the outcomes of potential disruptions under varying assumptions and designing contingency strategies accordingly. BI dashboards operationalize these frameworks by consolidating data inputs, presenting predictive insights, and allowing decision-makers to simulate interventions dynamically. For instance, a global logistics company can use a dashboard to assess the impact of port closures on delivery schedules, test alternative shipping routes, and allocate resources optimally, all in real time (Olasoji et al., 2020; Asata et al., 2020). By integrating analytical models with visualization and interactivity, BI dashboards serve as both an information hub and a decision-support platform.

The theoretical foundations of BI dashboards for real-time supply chain risk assessment encompass a deep understanding of diverse risk types, the principles of data-driven business intelligence, and the integration of real-time analytics with predictive modeling. These foundations are operationalized through decision-making frameworks such as MCDA and scenario planning, which enable stakeholders to anticipate, quantify, and mitigate risks effectively. By combining comprehensive risk categorization with systematic data analysis and actionable visualization, BI dashboards provide a robust theoretical and practical basis for proactive, resilient, and data-driven global supply chain management.

2.2. Business Intelligence Dashboards

Business intelligence (BI) dashboards are digital platforms designed to consolidate, visualize, and interpret complex datasets, enabling organizations to make informed, datadriven decisions. At their core, BI dashboards provide a centralized interface where key performance indicators (KPIs), metrics, and analytical insights are presented in an intuitive, interactive format. The architecture of a BI dashboard typically consists of a multi-layered system, including a data layer for collection and storage, a processing layer for analytics and transformation, and a visualization layer for end-user interaction (Asata *et al.*, 2020; Akpe *et al.*, 2020). This architecture allows dashboards to integrate heterogeneous data sources, process large volumes of information efficiently, and deliver actionable insights to stakeholders in a timely manner. Features commonly found

in BI dashboards include customizable KPIs, automated alerts, trend analyses, predictive modeling modules, drill-down capabilities, and interactive data visualizations, all of which support proactive decision-making and operational oversight.

The effectiveness of BI dashboards is heavily dependent on the quality and diversity of their data sources. Enterprise Resource Planning (ERP) systems provide comprehensive internal datasets, including production schedules, inventory levels, financial transactions, and procurement records. IoT devices embedded in machinery, transportation fleets, and warehouse equipment supply real-time operational metrics, such as equipment utilization, environmental conditions, and shipment tracking. Supplier feeds and market data offer insights into potential disruptions, such as delays, cost fluctuations, or changes in demand patterns. Logistics tracking platforms enable continuous monitoring of goods in transit, identifying delays, route deviations, and bottlenecks. By integrating these disparate datasets, BI dashboards offer a holistic view of the supply chain, enabling managers to detect early warning signals and assess the potential impact of emerging risks (ODINAKA et al., 2020; Ilufoye et al., 2020). Visualization tools within BI dashboards translate complex data into accessible, actionable formats. Key Performance Indicators (KPIs) provide quantitative measures of supply chain performance, allowing managers to track progress against predefined targets. Alerts and notifications signal deviations or anomalies, enabling rapid responses to operational disruptions. Trend analysis visualizes historical patterns in demand, supply, and operational performance, supporting predictive and strategic planning. Heatmaps and geographic information systems (GIS) facilitate spatial analysis of supply chain risks, such as identifying regions prone to transportation delays, environmental hazards, or geopolitical instability. Interactive dashboards allow users to drill down into granular data, filter by parameters, and compare scenarios, enhancing analytical depth and enabling evidence-based decisions at both tactical and strategic levels (Osabuohien, 2017; Giwah et al., 2020).

An important distinction in BI dashboards is real-time versus near-real-time data processing. Real-time dashboards ingest and analyze data, providing continuously instantaneous updates on operational metrics and supply chain conditions. This capability is critical in highly dynamic environments where immediate decision-making is required, such as rerouting shipments due to port closures or adjusting production schedules in response to supplier delays. Nearreal-time dashboards, while slightly delayed, offer a practical balance between data processing efficiency and latency, delivering updates at short intervals sufficient for most operational and tactical decisions (Mgbame et al., 2020; Asata et al., 2020). Advances in cloud computing, high-speed data pipelines, and edge computing have enabled both realtime and near-real-time dashboards to operate effectively at scale, ensuring that managers can access timely, accurate, and actionable insights regardless of geographical location or network constraints.

BI dashboards are comprehensive digital platforms that integrate multi-source data, provide advanced analytical processing, and deliver intuitive visualizations for real-time supply chain monitoring. Their architecture—comprising data collection, processing, and visualization layers—supports scalability, adaptability, and dynamic decision-

making. By leveraging ERP systems, IoT devices, supplier feeds, market intelligence, and logistics tracking data, dashboards provide holistic insights into supply chain operations. Visualization tools, including KPIs, alerts, trend analyses, heatmaps, and GIS, enhance interpretability and responsiveness, while real-time and near-real-time data processing ensures that decision-makers have the most current information available (Amos *et al.*, 2014; Giwah *et al.*, 2020). Collectively, these capabilities position BI dashboards as essential instruments for proactive, data-driven risk assessment and operational resilience in global supply chains.

2.3. Enabling Real-Time Supply Chain Risk Assessment

The increasing complexity and globalization of supply chains have heightened the need for systems capable of real-time risk assessment. Disruptions, whether caused by supplier delays, inventory shortages, transportation bottlenecks, or geopolitical events, can rapidly propagate through supply networks, resulting in financial losses, operational inefficiencies, and reputational damage. Real-time supply chain risk assessment systems, often enabled by business intelligence (BI) dashboards and advanced analytics, provide organizations with the ability to monitor, predict, and respond to these disruptions with agility and precision as shown in figure 1 (Asata *et al.*, 2020; Adeyelu *et al.*, 2020).

Effective monitoring of disruptions forms the foundation of real-time risk assessment. Modern supply chains rely on multiple suppliers, logistic providers, and distribution networks, which makes tracking potential bottlenecks critical. Delays in supplier deliveries, fluctuations in inventory levels, or interruptions in transportation can be detected through continuous data streams from enterprise resource planning (ERP) systems, IoT-enabled sensors, and logistics tracking platforms. Furthermore, external events such as geopolitical instability, trade restrictions, or port closures can impact supply chain performance, necessitating monitoring beyond the organization's immediate operations. By aggregating these diverse data sources, real-time systems enable organizations to detect deviations from expected performance and issue alerts that inform rapid corrective actions

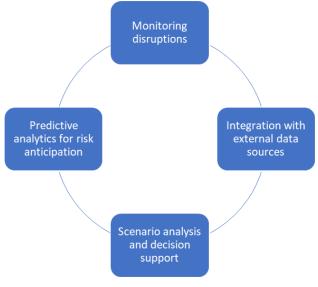


Fig 1: Scenario analysis and decision support

Predictive analytics enhances the capability of real-time risk assessment by anticipating potential disruptions before they occur. Machine learning algorithms, regression models, and simulation techniques allow organizations to analyze historical patterns, identify correlations among risk factors, and forecast the likelihood of future events. For instance, regression models can quantify the impact of supplier reliability, lead time variability, or seasonal demand fluctuations on inventory levels, while machine learning algorithms can detect emerging patterns that indicate elevated risk in specific supply chain segments. Simulation models, such as Monte Carlo or discrete-event simulations, provide probabilistic insights into potential outcomes, enabling decision-makers to evaluate the expected costs and consequences of various disruption scenarios (Giwah et al., 2020; Ilufoye et al., 2020). Collectively, predictive analytics transforms raw monitoring data into actionable foresight, supporting proactive risk mitigation strategies.

Integration with external data sources is a critical enabler of robust real-time risk assessment. Market intelligence, weather forecasts, and regulatory updates provide context that internal operational data alone cannot offer. For example, weather predictions can inform transportation and inventory planning, while regulatory announcements can anticipate compliance-related disruptions or trade barriers. By connecting BI dashboards to these external information streams, organizations can dynamically adjust their risk models and update valuations of potential disruptions (Oni *et al.*, 2012; Osabuohien, 2017). This integration ensures that real-time risk assessments remain comprehensive, reflecting not only internal operations but also the broader environmental and market factors that influence supply chain performance.

Scenario analysis and decision support constitute the prescriptive dimension of real-time risk assessment. Once potential disruptions are identified or anticipated, organizations can simulate various contingency plans and evaluate their cost and operational implications. Scenario analysis allows managers to test alternative sourcing strategies, transportation routes, or inventory allocations under different risk conditions, assessing both effectiveness and feasibility (Adeyelu et al., 2020; Elebe and Imediegwu, 2020). Cost impact modeling further supports these decisions by estimating the financial consequences of each scenario, enabling decision-makers to select strategies that optimize resilience while minimizing unnecessary expenditure. Interactive dashboards provide visualization of these scenarios, facilitating rapid comprehension and collaborative decision-making among stakeholders.

Enabling real-time supply chain risk assessment requires a multifaceted approach that combines monitoring, predictive analytics, integration of external data, and scenario-based decision support. Continuous tracking of supplier, inventory, and transportation metrics, alongside attention to geopolitical and market factors, ensures timely detection of disruptions. Predictive models translate this data into actionable foresight, while integration with external sources enhances comprehensiveness and accuracy. Scenario analysis and decision-support tools empower organizations to anticipate, plan, and respond effectively to risks, strengthening operational resilience and maintaining supply chain continuity. Collectively, these capabilities position real-time risk assessment as an essential component of modern, globally connected supply chains, allowing organizations to

navigate uncertainty with greater agility, precision, and strategic foresight (Otokiti, 2012; Lawal *et al.*, 2014).

2.4. Applications Across Global Supply Chains

Business intelligence (BI) dashboards have become integral tools for enhancing visibility, efficiency, and resilience across global supply chains. Their capacity to consolidate data from multiple sources, provide real-time insights, and facilitate predictive analysis has transformed supply chain operations in various industries. By enabling proactive risk assessment and informed decision-making, BI dashboards ensure continuity, optimize performance, and enhance responsiveness to dynamic global market conditions (Elebe and Imediegwu, 2020; Adeyelu *et al.*, 2020).

In the manufacturing and production industries, BI dashboards are essential for ensuring just-in-time (JIT) delivery and operational continuity. Manufacturers rely on precise synchronization of raw material procurement, production schedules, and distribution to minimize inventory holding costs and reduce waste. Real-time dashboards enable managers to monitor supplier performance, track inventory levels, and detect potential bottlenecks before they disrupt production. Predictive analytics embedded within dashboards can forecast demand fluctuations, identify potential delays in material supply, and recommend corrective actions, ensuring that production lines operate without interruptions. For largescale, multi-site manufacturing operations, dashboards also facilitate cross-location coordination, allowing for real-time visibility into resource allocation, machine utilization, and workflow efficiency (Akinbola and Otokiti, 2012; Lawal et al., 2014).

In retail and e-commerce, BI dashboards support inventory tracking, demand forecasting, and shipping reliability. Retailers face constant fluctuations in consumer demand, seasonal variations, and the complexities of omni-channel distribution. Dashboards consolidate point-of-sale data, supplier inputs, and logistics information to provide a comprehensive view of inventory status and product movement. Alerts and predictive modules help anticipate stockouts, overstock situations, and shipping delays, enabling managers to implement timely mitigation measures such as adjusting orders, rerouting shipments, or reallocating stock between locations. Furthermore, dashboards enhance customer satisfaction by providing visibility into order fulfillment progress and delivery timelines, which is particularly critical in e-commerce environments where rapid delivery expectations are high.

For logistics and transportation, BI dashboards are instrumental in route optimization, delivery risk mitigation, and regulatory compliance. Transportation managers can monitor fleet performance, track shipments in real time, and evaluate route efficiency. GIS and predictive analytics help identify potential delays caused by traffic congestion, port closures, or weather disruptions, allowing operators to reroute shipments proactively. Dashboards also facilitate compliance with customs regulations and international trade laws by integrating relevant documentation, tracking status, and highlighting potential risks for shipments crossing borders. By consolidating operational, regulatory, and environmental data, dashboards provide a comprehensive decision-support system that reduces delays, minimizes costs, and improves overall supply chain reliability.

In pharmaceutical and healthcare supply chains, BI dashboards serve as critical tools for monitoring inventory,

managing compliance risks, and ensuring the timely availability of essential medical products. The healthcare sector is highly sensitive to supply chain disruptions, as delays or shortages of drugs, vaccines, or medical equipment can have life-threatening consequences. Dashboards track inventory levels in real time, monitor expiration dates, and identify potential bottlenecks in the supply chain. Predictive analytics enable proactive demand forecasting, ensuring adequate stock levels while minimizing Additionally, dashboards support compliance with regulatory standards such as Good Distribution Practices (GDP) and Good Manufacturing Practices (GMP), by tracking conditions, and documentation. shipment supplier certifications. These capabilities are particularly valuable during public health emergencies or global crises, when rapid, accurate, and coordinated responses are required.

Across these diverse industries, the application of BI dashboards provides a unified framework for supply chain risk assessment, operational optimization, and strategic planning. By integrating data from internal and external sources, dashboards enable stakeholders to anticipate disruptions, implement timely corrective measures, and maintain seamless operations despite the complexity of global supply networks. The flexibility and scalability of BI dashboards allow them to address industry-specific challenges while providing universal benefits such as enhanced transparency, improved responsiveness, and cost efficiency.

BI dashboards are transformative tools for global supply chains, facilitating proactive risk management, operational continuity, and strategic decision-making. Whether in manufacturing, retail, logistics, or healthcare, dashboards enable organizations to monitor critical metrics, forecast potential disruptions, optimize processes, and ensure compliance, thereby enhancing resilience, efficiency, and competitiveness in an increasingly interconnected and dynamic global environment (Elebe and Imediegwu, 2020; Imediegwu and Elebe, 2020).

2.5. Benefits of Real-Time BI Dashboards

Real-time business intelligence (BI) dashboards have become pivotal in enhancing the management and resilience of global supply chains. By integrating continuous data streams from internal operations and external sources, these dashboards provide organizations with a dynamic, interactive, and visual interface for monitoring performance and assessing risk as shown in figure 2(Imediegwu and Elebe, 2020; Akinbola *et al.*, 2020). The adoption of real-time BI dashboards offers numerous benefits, ranging from enhanced situational awareness to cost reduction and improved accountability, fundamentally transforming how supply chains operate.

Enhanced situational awareness is one of the foremost advantages of real-time BI dashboards. By aggregating data from suppliers, logistics providers, inventory systems, and market intelligence sources, dashboards present a consolidated view of supply chain activities. Decision-makers can instantly observe deviations from planned operations, such as delays in shipments, inventory shortages, or unexpected changes in demand. This visibility allows managers to respond rapidly to disruptions, preventing minor issues from escalating into critical problems. The interactive visualization of metrics and performance indicators also supports faster comprehension and informed decision-making, enabling supply chain leaders to prioritize actions

and allocate resources effectively in dynamic operational contexts.

Proactive risk mitigation and improved resilience are additional benefits provided by real-time BI dashboards. By combining monitoring capabilities with predictive analytics, organizations can anticipate potential disruptions before they materialize. Machine learning algorithms, regression models, and simulation tools embedded within dashboards enable forecasting of inventory shortages, supplier delays, or transportation bottlenecks. This foresight allows managers to implement contingency plans, such as alternative sourcing, expedited shipping, or buffer stock adjustments, reducing vulnerability to unexpected events. Consequently, supply chains become more robust, capable of sustaining operations under adverse conditions and minimizing the negative impacts of disruptions on service levels and customer satisfaction.

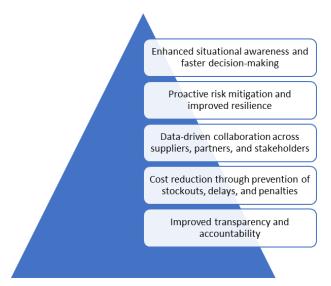


Fig 2: Benefits of Real-Time BI Dashboards

Real-time BI dashboards also foster data-driven collaboration across suppliers, partners, and stakeholders. By providing a shared digital platform with real-time updates, all participants in the supply chain can access the same information simultaneously, ensuring consistency and alignment in decision-making. Collaborative dashboards facilitate communication regarding risk alerts, inventory levels, or performance targets, enabling joint problem-solving and coordinated responses. This interconnected approach strengthens partnerships, encourages transparency, and promotes a shared commitment to operational excellence, ultimately improving overall supply chain efficiency and cohesion.

Cost reduction is another significant benefit of implementing real-time BI dashboards. By preventing stockouts, minimizing delays, and avoiding penalties associated with contractual obligations, organizations can reduce both direct and indirect costs. For example, early identification of potential delays allows for timely corrective measures such as rerouting shipments or adjusting production schedules, preventing costly disruptions. Similarly, accurate tracking of inventory levels and demand fluctuations enables optimized stock management, reducing holding costs and obsolescence (Nwani *et al.*, 2020; Imediegwu and Elebe, 2020). The financial advantages of preventing avoidable losses and improving operational efficiency contribute to a stronger

bottom line and increased competitiveness in global markets. Improved transparency and accountability represent an additional critical advantage. Real-time dashboards document all inputs, assumptions, and updates, providing an auditable record of supply chain activities and decisions. This transparency facilitates compliance with regulatory requirements, internal governance standards, and contractual obligations. Stakeholders can review and verify data, assess the rationale behind decisions, and hold responsible parties accountable for deviations from established protocols. The visibility provided by BI dashboards thus enhances trust among suppliers, partners, and customers, while supporting evidence-based management practices and continuous improvement initiatives.

Real-time BI dashboards offer transformative benefits for global supply chain management. Enhanced situational awareness and faster decision-making allow organizations to detect and respond to operational deviations promptly. Predictive analytics enable proactive risk mitigation and strengthen resilience against disruptions. Collaborative data-driven coordination platforms promote stakeholders, while cost reductions are achieved by preventing stockouts, delays, and penalties. Finally, transparency and accountability ensure that operations are auditable and governance standards are maintained. Collectively, these advantages demonstrate the strategic value of real-time BI dashboards, positioning them as essential tools for organizations seeking to navigate increasingly complex, dynamic, and interconnected supply chain environments efficiently and effectively (Nwani et al., 2020; Bankole et al., 2020).

2.6. Challenges and Limitations

While business intelligence (BI) dashboards provide significant advantages in global supply chain risk assessment, their implementation and use are accompanied by several challenges and limitations as shown in figure 3. Addressing these factors is essential to ensure that organizations can fully leverage the potential of dashboards while mitigating risks associated with data reliance, technological complexity, and organizational readiness.

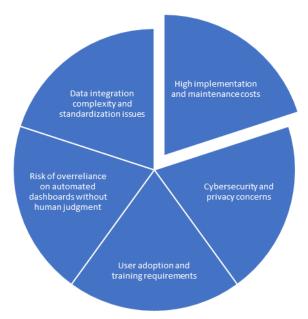


Fig 3: Challenges and Limitations

A primary challenge lies in data integration complexity and standardization issues. Global supply chains generate massive volumes of data from diverse sources, including enterprise resource planning (ERP) systems, Internet of Things (IoT) devices, supplier feeds, market intelligence platforms, and logistics tracking tools. These datasets often exist in heterogeneous formats, using different units of measurement, time zones, or reporting standards. Integrating these disparate data streams into a unified BI dashboard requires sophisticated data cleaning, normalization, and transformation processes (Oladuji et al., 2020; Akinrinoye et al., 2020). Without standardization, inconsistencies and inaccuracies may propagate through the system, leading to flawed analyses and potentially misguided decisions. Furthermore, multi-tiered supply chains often involve thirdparty suppliers who may lack digital reporting capabilities, creating additional gaps in data continuity and reliability.

High implementation and maintenance costs represent another significant limitation. Deploying a robust BI dashboard requires investment in hardware, software, cloud and advanced analytics platforms. infrastructure, Organizations must also maintain these systems continuously, including database management, software updates, and integration with evolving operational technologies. For small and medium-sized enterprises or companies operating across regions with varying technological readiness, these costs can be prohibitive. Failure to allocate sufficient resources may result in partial implementation, underutilized dashboards, or degraded performance, reducing the effectiveness of risk monitoring and decision-making.

Cybersecurity and privacy concerns are increasingly critical in a digital, data-intensive environment. BI dashboards centralize sensitive operational, financial, and supplier data, making them attractive targets for cyberattacks such as ransomware, phishing, and data breaches. Unauthorized access can compromise proprietary information, disrupt supply chain operations, and damage organizational reputation. Additionally, privacy regulations such as the General Data Protection Regulation (GDPR) require careful handling of personal data, including employee or supplier information. Ensuring compliance and securing dashboards against evolving threats demands continuous monitoring, encryption, access controls, and staff awareness, which can further strain organizational resources.

User adoption and training requirements also pose a barrier to the successful use of BI dashboards. Supply chain professionals may resist new technologies due to perceived complexity, fear of redundancy, or lack of familiarity with analytical tools. Effective adoption requires comprehensive training programs, change management initiatives, and engagement of end-users in system design to ensure usability and relevance. Without adequate training, users may misinterpret insights, underutilize dashboard functionalities, or bypass automated recommendations, diminishing the anticipated benefits of real-time risk assessment.

Finally, there is a risk of overreliance on automated dashboards without human judgment. While dashboards provide actionable insights, predictive analytics, and scenario simulations, they cannot capture all contextual nuances or adapt to unprecedented events in the way human expertise can. Blind reliance on automated outputs may lead to decisions that overlook qualitative factors, stakeholder

considerations, or unforeseen environmental variables. Effective risk management requires a hybrid approach, combining the speed and accuracy of BI dashboards with the critical thinking and contextual understanding of experienced supply chain professionals.

BI dashboards offer transformative capabilities for global supply chain risk assessment, yet their adoption is constrained by data integration challenges, high costs, cybersecurity and privacy risks, user adoption hurdles, and the potential for overreliance on automated outputs. Organizations must address these limitations through rigorous data governance, strategic investment, cybersecurity protocols, training programs, and the integration of human expertise into decision-making processes (Fiemotongha *et al.*, 2020; FAGBORE *et al.*, 2020). By proactively managing these challenges, firms can maximize the value of BI dashboards, achieving enhanced operational resilience, informed risk mitigation, and competitive advantage in complex global supply networks.

2.7. Future Directions

The evolution of real-time business intelligence (BI) dashboards in supply chain risk management is increasingly shaped by emerging technologies and collaborative practices that enhance predictive accuracy, operational transparency, global coordination. AI-driven predictive prescriptive analytics are at the forefront of this transformation. Advanced machine learning algorithms and reinforcement learning models enable autonomous decisionmaking by analyzing vast datasets, identifying patterns, and recommending optimized responses to potential disruptions (ILORI et al., 2020; EYINADE et al., 2020). Predictive analytics allow organizations to forecast inventory shortages, supplier delays, or transportation bottlenecks, while prescriptive analytics suggest actionable strategies to mitigate risks and optimize outcomes. This dual capability shifts supply chains from reactive to proactive management, supporting resilience in increasingly complex and volatile environments.

Integration with blockchain technology represents another significant future direction. Blockchain provides a decentralized, immutable ledger that can enhance transparency and traceability across supply chains. Linking real-time BI dashboards with blockchain networks ensures that all transactions, valuations, and operational updates are securely recorded and verifiable by authorized stakeholders. This capability reduces fraud, strengthens compliance with regulatory requirements, and enhances trust among suppliers, partners, and customers. Furthermore, blockchain-enabled smart contracts can automate financial and operational processes, such as payments upon verified deliveries or compliance with contractual milestones, further increasing efficiency and accountability.

Cloud-based global dashboards are set to become central to real-time supply chain risk assessment, enabling cross-border interoperability and accessibility. Cloud platforms allow stakeholders across multiple geographic locations to access unified, up-to-date information simultaneously, fostering collaboration and alignment in decision-making. Scalable cloud infrastructures support the computational demands of large-scale predictive models, scenario analyses, and visualization tools, facilitating rapid updates and interactive monitoring of supply chain performance. This global connectivity ensures that organizations can respond to

disruptions occurring anywhere in the supply chain with agility and informed foresight.

The expansion of the Internet of Things (IoT) offers additional opportunities for real-time environmental and operational monitoring. IoT devices, such as sensors on transportation fleets, warehouse equipment, and production lines, provide continuous streams of granular data on location, temperature, humidity, and operational status. When integrated with BI dashboards, this information enables precise monitoring of supply chain conditions, early detection of anomalies, and automated triggering of mitigation strategies (Ilufoye et al., 2020; ODINAKA et al., 2020). By providing a real-time view of both environmental and operational parameters, IoT-enhanced dashboards significantly reduce latency in risk detection and response. Finally, industry-wide collaboration is emerging as a crucial driver of future developments. Standardized risk metrics and shared data ecosystems allow organizations to benchmark performance, share insights, and coordinate responses to systemic disruptions such as global pandemics, natural disasters, or geopolitical crises. Collaborative platforms that aggregate anonymized data from multiple firms enhance the predictive power of analytics, improve risk visibility across sectors, and support the development of best practices for supply chain resilience. By establishing common protocols and shared intelligence, the industry can collectively enhance preparedness and responsiveness.

The future of real-time BI dashboards in supply chain risk management is characterized by the integration of AI-driven analytics, blockchain transparency, cloud-based global platforms, IoT-enabled monitoring, and cross-industry collaboration. These innovations collectively enable more autonomous, proactive, and resilient supply chains capable of responding rapidly to disruptions while maintaining operational efficiency and stakeholder trust. As these technologies continue to mature and converge, real-time dashboards will increasingly serve as strategic tools for navigating the complexities of global supply networks, fostering transparency, collaboration, and informed decision-making across diverse operational landscapes.

3. Conclusion

Business intelligence (BI) dashboards have emerged as transformative tools for global supply chain risk management, providing organizations with the ability to monitor operations, anticipate disruptions, and make informed decisions in real time. By consolidating data from diverse sources—such as enterprise resource planning systems, IoT devices, supplier feeds, market intelligence, and logistics tracking platforms—dashboards offer a unified, dynamic view of complex supply chains. The integration of predictive analytics, scenario modeling, and visualization techniques allows stakeholders to identify vulnerabilities, evaluate potential impacts, and implement mitigation strategies proactively, rather than relying solely on reactive measures. Across industries—including manufacturing, retail, logistics, and healthcare—BI dashboards have demonstrated their capacity to enhance operational continuity, optimize resource allocation, and maintain customer satisfaction in increasingly complex and interconnected global supply networks.

The significance of BI dashboards lies in their ability to enable real-time, data-driven, and proactive decision-making. Managers can track key performance indicators, detect anomalies, and assess risks as they emerge, facilitating rapid responses to supply chain disruptions. Predictive modeling supports forecasting of potential delays, demand fluctuations, and cost overruns, while visualization tools such as heatmaps, trend analyses, and geographic information systems enhance interpretability and situational awareness. Collectively, these capabilities enhance transparency, reduce operational inefficiencies, and strengthen organizational resilience against internal and external risks.

To fully realize these benefits, organizations must invest strategically in integrated BI infrastructure, workforce training, and global data ecosystems. Establishing standardized data collection and integration processes, developing analytical competencies among supply chain professionals, and fostering collaborative data-sharing networks are essential to maximize the effectiveness of BI dashboards. By combining technological investment with human expertise and robust governance, organizations can leverage real-time insights to optimize supply chain performance, mitigate risks, and achieve sustainable competitive advantage in the dynamic global market.

4. References

- 1. Abass OS, Balogun O, Didi PU. A multi-channel sales optimization model for expanding broadband access in emerging urban markets. IRE J. 2020;4(3):191-8.
- 2. Abass OS, Balogun O, Didi PU. A sentiment-driven churn management framework using CRM text mining and performance dashboards. IRE J. 2020;4(5):251-9.
- Adelusi BS, Uzoka AC, Hassan YG, Ojika FU. Leveraging transformer-based large language models for parametric estimation of cost and schedule in agile software development projects. IRE J. 2020;4(4):267-73. doi: 10.36713/epra1010.
- 4. Adeyelu OO, Ugochukwu CE, Shonibare MA. AI-driven analytics for SME risk management in low-infrastructure economies: a review framework. IRE J. 2020;3(7):193-200.
- Adeyelu OO, Ugochukwu CE, Shonibare MA. Artificial intelligence and SME loan default forecasting: a review of tools and deployment barriers. IRE J. 2020;3(7):211-20.
- 6. Adeyelu OO, Ugochukwu CE, Shonibare MA. The role of predictive algorithms in optimizing financial access for informal entrepreneurs. IRE J. 2020;3(7):201-10.
- 7. Akinbola OA, Otokiti BO. Effects of lease options as a source of finance on profitability performance of small and medium enterprises (SMEs) in Lagos State, Nigeria. Int J Econ Dev Res Invest. 2012;3(3):70-6.
- 8. Akinbola OA, Otokiti BO, Akinbola OS, Sanni SA. Nexus of born global entrepreneurship firms and economic development in Nigeria. Ekon Manaz Spektrum. 2020;14(1):52-64.
- 9. Akinrinoye OV, Kufile OT, Otokiti BO, Ejike OG, Umezurike SA, Onifade AY. Customer segmentation strategies in emerging markets: a review of tools, models, and applications. Int J Sci Res Comput Sci Eng Inf Technol. 2020;6(1):194-217. doi: 10.32628/IJSRCSEIT.
- 10. Akpe OEE, Mgbame AC, Ogbuefi E, Abayomi AA, Adeyelu OO. Bridging the business intelligence gap in small enterprises: a conceptual framework for scalable adoption. IRE J. 2020;4(2):159-61.
- 11. Amos AO, Adeniyi AO, Oluwatosin OB. Market based

- capabilities and results: inference for telecommunication service businesses in Nigeria. Eur Sci J. 2014;10(7).
- 12. Asata MN, Nyangoma D, Okolo CH. Strategic communication for inflight teams: closing expectation gaps in passenger experience delivery. Int J Multidiscip Res Growth Eval. 2020;1(1):183-94. doi: 10.54660/.IJMRGE.2020.1.1.183-194.
- 13. Asata MN, Nyangoma D, Okolo CH. Reframing passenger experience strategy: a predictive model for net promoter score optimization. IRE J. 2020;4(5):208-17. doi: 10.9734/jmsor/2025/u8i1388.
- 14. Asata MN, Nyangoma D, Okolo CH. Leadership impact on cabin crew compliance and passenger satisfaction in civil aviation. IRE J. 2020;4(3):153-61.
- 15. Asata MN, Nyangoma D, Okolo CH. Benchmarking safety briefing efficacy in crew operations: a mixed-methods approach. IRE J. 2020;4(4):310-2. doi: 10.34256/ire.v4i4.1709664.
- Asata MN, Nyangoma D, Okolo CH. Human-centered design in inflight service: a cross-cultural perspective on passenger comfort and trust. Gyanshauryam Int Sci Ref Res J. 2023;6(3):214-33. doi: 10.32628/GISRRJ.236323.
- 17. Asata MN, Nyangoma D, Okolo CH. Conflict resolution techniques for high-pressure cabin environments: a service recovery framework. Int J Sci Res Humanit Soc Sci. 2024;1(2):216-32. doi: 10.32628/IJSRSSH.242543.
- 18. Asata MN, Nyangoma D, Okolo CH. Optimizing crew feedback systems for proactive experience management in air travel. Int J Sci Res Humanit Soc Sci. 2024:1(2):198-215. doi: 10.32628/JJSRSSH.242542.
- Balogun O, Abass OS, Didi PU. A behavioral conversion model for driving tobacco harm reduction through consumer switching campaigns. IRE J. 2020;4(2):348-55
- 20. Balogun O, Abass OS, Didi PU. A market-sensitive flavor innovation strategy for e-cigarette product development in youth-oriented economies. IRE\$;IRE J. 2020;3(12):395-402.
- 21. Bankole AO, Nwokediegwu ZS, Okiye SE. Emerging cementitious composites for 3D printed interiors and exteriors: a materials innovation review. J Front Multidiscip Res. 2020;1(1):127-44.
- 22. Didi PU, Abass OS, Balogun O. Integrating Alaugmented CRM and SCADA systems to optimize sales cycles in the LNG industry. IRE J. 2020;3(7):346-54.
- 23. Didi PU, Abass OS, Balogun O. Leveraging geospatial planning and market intelligence to accelerate off-grid gas-to-power deployment. IRE J. 2020;3(10):481-9.
- 24. Elebe O, Imediegwu CC. A predictive analytics framework for customer retention in African retail banking sectors. IRE J. 2020;3(7).
- 25. Elebe O, Imediegwu CC. Data-driven budget allocation in microfinance: a decision support system for resource-constrained institutions. IRE J. 2020;3(12).
- 26. Elebe O, Imediegwu CC. Behavioral segmentation for improved mobile banking product uptake in underserved markets. IRE J. 2020;3(9).
- 27. Eyinade W, Ezeilo OJ, Ogundeji IA. A treasury management model for predicting liquidity risk in dynamic emerging market energy sectors. [Journal name not provided]. 2020.
- Fagbore OO, Ogeawuchi JC, Ilori O, Isibor NJ, Odetunde A, Adekunle BI. Developing a conceptual

- framework for financial data validation in private equity fund operations. [Journal name not provided]. 2020.
- 29. Fiemotongha JE, Olajide JO, Otokiti BO, Nwani S, Ogunmokun AS, Adekunle BI. Designing a financial planning framework for managing SLOB and write-off risk in fast-moving consumer goods (FMCG). IRE J. 2020;4(4):259-66.
- 30. Giwah ML, Nwokediegwu ZS, Etukudoh EA, Gbabo EY. A resilient infrastructure financing framework for renewable energy expansion in Sub-Saharan Africa. IRE J. 2020;3(12):382-94.
- 31. Giwah ML, Nwokediegwu ZS, Etukudoh EA, Gbabo EY. A systems thinking model for energy policy design in Sub-Saharan Africa. IRE J. 2020;3(7):313-24.
- 32. Giwah ML, Nwokediegwu ZS, Etukudoh EA, Gbabo EY. Sustainable energy transition framework for emerging economies: policy pathways and implementation gaps. Int J Multidiscip Evol Res. 2020;1(1):1-6. doi: 10.54660/IJMER.2020.1.1.01-06.
- Ikponmwoba SO, Chima OK, Ezeilo OJ, Ojonugwa BM, Ochefu A, Adesuyi MO. A compliance-driven model for enhancing financial transparency in local government accounting systems. Int J Multidiscip Res Growth Eval. 2020;1(2):99-108. doi: 10.54660/.IJMRGE.2020.1.2.99-108.
- 34. Ikponmwoba SO, Chima OK, Ezeilo OJ, Ojonugwa BM, Ochefu A, Adesuyi MO. Conceptual framework for improving bank reconciliation accuracy using intelligent audit controls. J Front Multidiscip Res. 2020;1(1):57-70. doi: 10.54660/.IJFMR.2020.1.1.57-70.
- 35. Ilori O, Lawal CI, Friday SC, Isibor NJ, Chukwuma-Eke EC. Blockchain-based assurance systems: opportunities and limitations in modern audit engagements. [Journal name not provided]. 2020.
- 36. Ilufoye H, Akinrinoye OV, Okolo CH. A conceptual model for sustainable profit and loss management in large-scale online retail. Int J Multidiscip Res Growth Eval. 2020;1(3):107-13.
- 37. Ilufoye H, Akinrinoye OV, Okolo CH. A scalable infrastructure model for digital corporate social responsibility in underserved school systems. Int J Multidiscip Res Growth Eval. 2020;1(3):100-6.
- 38. Ilufoye H, Akinrinoye OV, Okolo CH. A strategic product innovation model for launching digital lending solutions in financial technology. Int J Multidiscip Res Growth Eval. 2020;1(3):93-9.
- 39. Imediegwu CC, Elebe O. KPI integration model for small-scale financial institutions using Microsoft Excel and Power BI. IRE J. 2020;4(2).
- 40. Imediegwu CC, Elebe O. Optimizing CRM-based sales pipelines: a business process reengineering model. IRE J. 2020;4(6).
- 41. Imediegwu CC, Elebe O. Leveraging process flow mapping to reduce operational redundancy in branch banking networks. IRE J. 2020;4(4).
- 42. Lawal AA, Ajonbadi HA, Otokiti BO. Leadership and organisational performance in the Nigeria small and medium enterprises (SMEs). Am J Bus Econ Manag. 2014;2(5):121.
- 43. Lawal AA, Ajonbadi HA, Otokiti BO. Strategic importance of the Nigerian small and medium enterprises (SMEs): myth or reality. Am J Bus Econ Manag. 2014;2(4):94-104.
- 44. Mgbame AC, Akpe OEE, Abayomi AA, Ogbuefi E,

- Adeyelu OO. Barriers and enablers of BI tool implementation in underserved SME communities. IRE J. 2020;3(7):211-3.
- 45. Nwani S, Abiola-Adams O, Otokiti BO, Ogeawuchi JC. Building operational readiness assessment models for micro, small, and medium enterprises seeking government-backed financing. J Front Multidiscip Res. 2020;1(1):38-43. doi: 10.54660/JJFMR.2020.1.1.38-43.
- 46. Nwani S, Abiola-Adams O, Otokiti BO, Ogeawuchi JC. Designing inclusive and scalable credit delivery systems using AI-powered lending models for underserved markets. IRE J. 2020;4(1):212-4. doi: 10.34293/irejournals.v4i1.1708888.
- 47. Odinaka N, Okolo CH, Chima OK, Adeyelu OO. Alenhanced market intelligence models for global data center expansion: strategic framework for entry into emerging markets. [Journal name not provided]. 2020.
- 48. Odinaka N, Okolo CH, Chima OK, Adeyelu OO. Datadriven financial governance in energy sector audits: a framework for enhancing SOX compliance and cost efficiency. [Journal name not provided]. 2020.
- 49. Oladuji TJ, Nwangele CR, Onifade O, Akintobi AO. Advancements in financial forecasting models: using AI for predictive business analysis in emerging economies. Iconic Res Eng J. 2020;4(4):223-36.
- 50. Olasoji O, Iziduh EF, Adeyelu OO. A cash flow optimization model for aligning vendor payments and capital commitments in energy projects. IRE J. 2020;3(10):403-4. doi: 10.34293/irejournals.v3i10.1709383.
- 51. Olasoji O, Iziduh EF, Adeyelu OO. A regulatory reporting framework for strengthening SOX compliance and audit transparency in global finance operations. IRE J. 2020;4(2):240-1. doi: 10.34293/irejournals.v4i2.1709385.
- 52. Olasoji O, Iziduh EF, Adeyelu OO. A strategic framework for enhancing financial control and planning in multinational energy investment entities. IRE J. 2020;3(11):412-3. doi: 10.34293/irejournals.v3i11.1707384.
- 53. Oni O, Adeshina YT, Iloeje KF, Olatunji OO. Artificial intelligence model fairness auditor for loan systems. [Journal name not provided]. 2020;8993:1162.
- 54. Osabuohien FO. Review of the environmental impact of polymer degradation. Commun Phys Sci. 2017;2(1).
- 55. Otokiti BO. Mode of entry of multinational corporation and their performance in the Nigeria market [dissertation]. Ota: Covenant University; 2012.
- Ozobu CO. A predictive assessment model for occupational hazards in petrochemical maintenance and shutdown operations. Iconic Res Eng J. 2020;3(10):391-9
- 57. Ozobu CO. Modeling exposure risk dynamics in fertilizer production plants using multi-parameter surveillance frameworks. Iconic Res Eng J. 2020;4(2):227-35.
- 58. Sobowale A, Ikponmwoba SO, Chima OK, Ezeilo OJ, Ojonugwa BM, Adesuyi MO. A conceptual framework for integrating SOX-compliant financial systems in multinational corporate governance. Int J Multidiscip Res Growth Eval. 2020;1(2):88-98. doi: 10.54660/.IJMRGE.2020.1.2.88-98.